Regional gravity survey, northern Marysvale volcanic field, south-central Utah

Author(s):  
MARK E. HALLIDAY ◽  
KENNETH L. COOK
2021 ◽  
Vol 6 (24) ◽  
pp. 213-225
Author(s):  
Shazad Jamal Jalal ◽  
Tajul Ariffin Musa ◽  
Ami Hassan Md Din ◽  
Wan Anom Wan Aris

Gravity data and computing gravity anomalies are regarded as vital for both geophysics and physical geodesy fields. The mountainous areas of Iraq are characterized by the lack of regional gravity data because gravity surveys are rarely performed in the past four decades due to the Iraq-Iran war and the internal unstable political situation of this particular region. In addition, the formal map of the available terrestrial gravity which was published by the French Database of Bureau Gravimetrique International (International Gravimetric Bureau-in English) (BGI), introduces Iraq and the study area as a remote area and in white color because of the unavailability of gravity data. However, a dense and local (not regional) gravity data is available which was conducted by geophysics researchers 13 years ago. Therefore, the regional gravity survey of 160 gravity points was performed by the authors at an average 11 km apart, which was covers the whole area of Sulaymaniyah Governorate (part of the mountainous areas of Iraq). In spite of Although the risk of mine fields within the study area, suitable safe routes as well as a helicopter was used for the gravity survey of several points on the top of mountains. The survey was conducted via Lacoste and Romberg geodetic gravimeter and GPS handheld. The objective of the study is to determine and map the gravity anomalies for the entire study area, the data of which would assist different geosciences applications.


Geophysics ◽  
1956 ◽  
Vol 21 (1) ◽  
pp. 88-106 ◽  
Author(s):  
Kenneth L. Cook

In 1948 the U. S. Geological Survey, in cooperation with the U. S. Coast and Geodetic Survey, made a regional gravity survey in northeastern Oklahoma and southeastern Kansas in connection with the studies of the deflection of the vertical. About 550 gravity stations were occupied with spacings of 5 to 10 miles in parts of 54 counties, and a Bouguer anomaly map, contoured at intervals of 5 milligals, was drawn. In southeastern Kansas there is a lack of correlation of regional gravity with known regional structural geology. The observed gravity anomalies are apparently caused principally by variations of density in the Precambrian basement and indicate a basement of complex nature, made up of rocks of contrasting properties, with a regional grain striking predominantly west or west‐northwest. In northeastern Oklahoma the several observed regional gravity anomalies indicate different degrees of correlation of regional gravity with regional structural geology. In the Precambrian highland area in Osage, Pawnee, and Creek Counties, there is a lack of correlation, as the gravity anomaly is probably caused chiefly by density contrasts within the basement complex. The anomaly associated with the Hunton arch is probably caused partly by structural relief of the rocks of pre‐Pennsylvanian age and partly by density contrasts within the basement, and thus indicates some correlation. The steep gravity gradients along the outer flanks of the Ozark uplift indicate good correlation with the subsurface geology. The great anomaly over the Arkansas basin, which indicates a close correlation, is probably caused largely—but perhaps not entirely—by downwarping of the basement and pre‐Pennsylvanian rocks.


2016 ◽  
Author(s):  
Samuel E. Berkelhammer ◽  
◽  
Matthew E. Brueseke ◽  
Jeffrey M. Trop ◽  
Jeff Benowitz ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document